IT工程师都需要掌握的容器技术
(三)边缘计算推动大数据中心云边协同化发展 伴随着物联网的发展,边缘计算链接的设备呈爆发式增长。除了电信运营商以外,服务器公司、芯片公司以及内容提供商都积极投入到边缘数据中心建设中。边缘数据中心可以实现设备、传感器、控制系统、业务系统等不同来源数据的快速汇聚采集,实现多源异构数据的有序流动,促使边缘计算的地位和重要性不断提升,云边协同成为可能。据Gartner预测,到2022年将有75%的企业数据由云端集中处理转向云边协同处理。边缘数据中心有利于解决数据不敢传、不能传的问题。针对安全保密要求较高的敏感数据、低能耗低时延数据,可以在边缘侧数据中心进行本地化采集处理,有效保障数据安全,降低了网络延时传输等方面的压力。针对非实时的海量数据,通过云端通用复杂算法开展数据建模分析,可以有效开展纵向横向对比分析,对业务进行全局优化重组,有利于发挥云端数据中心大存储、算力集中的优势,提高数据处理效率。打通边缘侧数据中心和云端数据中心之间的数据传输通道,实现边缘侧与云端协同,有利于促进数据有效流通,进一步释放数据价值。 (四)市场需求强劲为大数据中心发展提供强大动力 在政府导向和市场驱动的双重作用下,我国大数据中心发展迅猛,市场规模一直保持高速增长。政府采购云服务的带动作用日益凸显,很多行业采用云数据中心对原有系统更新以支持业务发展。如,浙江省水利厅将台风路径实时发布系统项目外包给阿里云;甘肃省、新疆维吾尔自治区部分电子政务系统已迁移到第三方的云服务上;贵州省新农合项目使用中国移动提供的云服务,成为卫健系统医疗信息化建设的标杆之一。传统IT架构难以适应客户业务模式的变革需要新的IT系统,云上迁移已经成为IT企业的共同选择,这也推动了整个大数据中心市场的发展。据不完全统计,2019年中国数据中心数量大约有7.4万个,大约占全球数据中心总量的23%,数据中心机架规模达到227万,在用IDC数据中心数量2213个。数据中心大型化、规模化趋势仍在延续。2019年,超大型、大型数据中心数量占比达到12.7%,规划在建数据中心320个,超大型、大型数据中心数量占比达到36.1%。美国超大型数据中心已占到全球总量的40%,与美国相比我国仍有较大发展空间。随着5G商用加速、新基建兴起、国内大数据市场必将迎来广阔发展前景。 大数据中心面临的发展困境 (一)结构性失衡致使大数据中心发展体系化不足 受用户需求、技术基础、建设水平等因素影响,国内大数据中心建设应用面临“大热小冷、东热西冷”的局面。一方面,大数据中心大量集聚在北上广深等一线城市,承载产业升级、城市治理等数字化需求,但也因能源消耗过大、散热要求高而受到收缩政策制约。同时,大数据中心大多为基础电信运营商和互联网龙头企业承建,70%以上IDC机房资源集中在移动、电信、联通三大运营商手中,数据中心资源面向行业、社会开放并转化成服务价值的程度不足,造成了数据中心资源浪费。另一方面,由于托管地域较远、网络稳定性不保障、数据安全性面临威胁,贵州等中西部地区大数据中心虽发展较快,但正步入结构性过剩阶段,整体资源的空置率超过50%,部分区域上架率甚至不足10%,与北上广深等地60%-80%的上架率相比差距明显。分散布局带来的共享问题促使大数据中心加速整合减缓步伐。企业分散办公的现况,带来了相互分散的应用系统布局。然而,企业存在对分支机构数据进行集中处理的需求,远程办公又受困于南北网络无法互通、国际网高延迟等问题,致使总部与分支机构之间难以实现顺畅通信和资源共享。于是,数据中心集中化成为一种必需。据不完全统计,全球2000名以内的企业均朝着数据中心整合的方向发展,数据中心从数以百计缩减为少数几个,应用程序也整合到了少数几台服务器上。在计算资源云化、5G速率大幅提升的带动下,大数据中心整合集中化之势将愈加明显,其建设应用将有可能摆脱对空间距离、设备规模等硬性要素的依赖,从一线城市向周边卫星城、乃至二三线城市逐级延伸,为推动全国大数据中心体系化建设、引导产业要素区域性流动、促进数据资源按行业用户需求均衡化配置提供有力支持。 (二)数据供应薄弱导致大数据中心应用成效低
海量数据为大数据中心孕育了前所未有的机遇,同时也带来了巨大的挑战。由于存储系统仍采用传统架构以及成本等问题,当前大数据中心仅有不到2%的数据被保存,数据“存不下”的问题日益严重。随着信息系统的不断发展,每天企业都产生大量的数据,但传统的数据录入需要预先的人工规划,使得物联网数据、视频数据、图片数据等大量非结构化数据以及一些新型的数据无法进入系统,数据缺失使得对业务的感知削弱,无法真实及时地反映业务的本来面貌。传统组织通常通过数据表来管理和分析数据,规模较大的公司数据表甚至可以达到数百万张,而且分散在各个业务系统中,如果没有统一的数据目录和全局数据视图,要在上百万张表中找特定数据,好比大海捞针,无法应对灵活多变的业务需求。当前,通常一个业务场景需要不同平台的数据协同,需要从多个业务系统获取数据,但是隐私和安全共享机制缺失,数据需要经过多部门协调、联通、核实获取。数据获取的链路冗长,一旦出现问题,需要多方会谈才能解决,无法保障数据供应稳定和高可用性,更无法实现高效的数据融合分析。数据存不下、找不到、管不住等问题导致数据供应有待提升,对业务决策的支持性带来影响,进而影响了大数据中心的应用成效。 (编辑:吉安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |