一文搞懂线性表
还有一些过去常用的图像分割技术,但效率不如深度学习技术,因为它们使用严格的算法,需要人工干预和专业知识。这些包括:
深度学习如何助力图像分割方法 现代图像分割技术以深度学习技术为动力。下面是几种用于分割的深度学习架构: 使用CNN进行图像分割,是将图像的patch作为输入输入给卷积神经网络,卷积神经网络对像素进行标记。CNN不能一次处理整个图像。它扫描图像,每次看一个由几个像素组成的小“滤镜”,直到它映射出整个图像。 传统的cnn网络具有全连接的层,不能处理不同的输入大小。FCNs使用卷积层来处理不同大小的输入,可以工作得更快。最终的输出层具有较大的感受野,对应于图像的高度和宽度,而通道的数量对应于类的数量。卷积层对每个像素进行分类,以确定图像的上下文,包括目标的位置。 集成学习 将两个或两个以上相关分析模型的结果合成为单个。集成学习可以提高预测精度,减少泛化误差。这样就可以对图像进行精确的分类和分割。通过集成学习尝试生成一组弱的基础学习器,对图像的部分进行分类,并组合它们的输出,而不是试图创建一个单一的最优学习者。 DeepLab 使用DeepLab的一个主要动机是在帮助控制信号抽取的同时执行图像分割 —— 减少样本的数量和网络必须处理的数据量。另一个动机是启用多尺度上下文特征学习 —— 从不同尺度的图像中聚合特征。DeepLab使用ImageNet预训练的ResNet进行特征提取。DeepLab使用空洞卷积而不是规则的卷积。每个卷积的不同扩张率使ResNet块能够捕获多尺度的上下文信息。DeepLab由三个部分组成:
SegNet neural network 一种基于深度编码器和解码器的架构,也称为语义像素分割。它包括对输入图像进行低维编码,然后在解码器中利用方向不变性能力恢复图像。然后在解码器端生成一个分割图像。 (编辑:吉安站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |